STUDY ON CORROSION RESISTANCE OF CARBON NANOTUBES REINFORCED Al₂O₃ COATING

Nguyen Van Tuan¹*, Ly Quoc Cuong¹, Le Thu Quy², Pham Thi Ha¹, Pham Thi Ly¹

¹Institute for Tropical Technology, VAST, 18, Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
²National Key Laboratory for Welding and Surface Treatment Technologies, NARIME, 4 Pham Van Dong, Cau Giay, Ha Noi, Viet Nam

*Email: nvtuan@itt.vast.vn

Received: 11 August 2017; Accepted for publication: 7 October 2017

ABSTRACT

This paper presents our research on the reinforcement with 1% of carbon nanotubes (CNT) for a ceramic Al₂O₃ coating applied by air plasma spray (APS) on CT3 steel. The corrosion resistances of both CNTs reinforced and non-CNTs reinforced Al₂O₃ coatings were investigated by using different such techniques as: potentiodynamic polarization; electrochemical impedance spectroscopy (EIS); salt spray and erosion corrosion tests.

The obtained results show positive effects of CNT to improve the corrosion protection of the Al₂O₃ coating: time of appearance of first rust points on the surface in the salt spray test increased from 2 hours for pure Al₂O₃ coating to 24 hours for the CNTs-Al₂O₃ one; the erosion-corrosion resistance of the CNTs-Al₂O₃ coating increased about 17% in comparison with the one of the Al₂O₃ coating.

Keywords: Al₂O₃ coating; air plasma spray; carbon nanotubes

1. INTRODUCTION

Plasma spray is one of the thermal spray methods that are commonly used to create coatings with advanced surface properties. The technique can create a variety of coatings such as metal coatings, ceramic coatings and metallic ceramic coatings [1]. Plasma coatings are mainly used in erosive, corrosive and high temperature environments [2 - 5].

Al₂O₃ coating was prepared by the plasma spray technique with heterogeneous structure. Inside the coating, there are always defects, cracks and micropores which affect the working capability of the coating [6 - 8]. The properties of the coating, especially the corrosion resistance, can be enhanced by treating the coating’s defects and micropores.

The use of reinforcing materials to enhance the properties of thermal coatings, including plasma coating has been focused on in recent years. One of ideal reinforcing materials for plasma coating is carbon nanotubes (CNTs) due to its excellent mechanical and thermal
properties. CNTs have special properties depending on the structures, such as being 6 times lighter but 100 times more durable than steel; elastic modulus of up to 1 TPa which is equivalent to that of diamond; high temperature resistance (about 2800°C in vacuum and 700 °C in air); high thermal conductivity (about 3000 W/m.K) [9]. The activity of incorporating this material into Al2O3 plasma coating to enhance the properties of the coating has been studied by many scientists [10 - 14].

Recently, Rakesh Goyal et al. used CNTs to reinforce plasma Al2O3 coating (CNTs/Al2O3). The coating was studied for application in boiler industry. The obtained results showed that, the porosity of the coating with 1.5 % CNTs reinforcement and without CNTs reinforcement was 3.99 % and 4.18 % respectively [15].

In Vietnam, the microstructure and mechanical properties of the CNTs/Al2O3 plasma coating have been studied recently by Pham Thi Ha et al. [16]. However, its corrosion properties have not been investigated. Therefore, in this paper, we will focus on surveying the corrosion properties of CNTs/Al2O3 coating. In addition, the corrosion resistance of non-CNTs reinforced Al2O3 will also be studied simultaneously for comparison purpose.

2. EXPERIMENTAL

2.1. Coating materials

The α-Al2O3 spray powder (purity of 98.5 %, dimension of 25 ÷ 75 μm) from PRAXAIR-TAFA (USA) was mixed with CNTs with a content of 1.0 %. CNTs are multi-walled in structure with purity of greater than 90 %, diameter of 20 ÷ 80 nm and length of 10 ÷ 100 μm. The material mixture was blended in a mixer for 12 hours continuously with a speed of 200 rpm. Pure Al2O3 powder is prepared to create coating with non-CNTs reinforced for comparison with Al2O3 coating with CNTs reinforcement. In addition, NiCr20 powder with grain size of 15 ÷ 45 μm (China) was sprayed as the bond coat on the CT3 steel substrates.

2.2. Preparation of coating

The NiCr20 coating (bond coating), CNTs/Al2O3 and Al2O3 coatings (top coating) were applied by 3710-PRAXAIR-TAFA air plasma spray equipment (USA) at the National Key Laboratory for Welding and Surface Treatment Technologies - NARIME. The spray parameters for creating coatings are as follows [15]:

- Current: 550 A (for both top and bond coatings),
- Potential: 50 V (for both top and bond coatings),
- Pressure of primary gas Ar: 50 psi for top coating and 45 psi for bond coating,
- Pressure of secondary gas He: 10 psi (for both top and bond coatings),
- Powder feed rate: 45 g/min for top coating and 10 g/min for bond coating.

The coatings were sprayed on the CT3 sheet plate with dimension of 50 × 50 × 3 mm after being cleaned and roughened by corundum abrasive blasting. The thickness of NiCr20 coating is about 100 μm and the one of CNTs/Al2O3 and Al2O3 coatings is about 300 μm.
2.2. Research methods

The morphology of Al$_2$O$_3$ powder before and after mixing with CNTs was studied using cathode cold field emission scanning electron microscope FESEM Hitachi S-4800 (Japan). Structures and phase compositions of Al$_2$O$_3$ and CNTs/Al$_2$O$_3$ coatings were analysis by XRD performed as follows: temperature 25 °C, the sweep angle 2θ in a ranges from 10° to 60°, measurement step angle of 0.03 °s, using Cu radiation. The cross-sectional structure of the coatings was analyzed using optical microscope Axiovert 40 Mat (Germany). The corrosion resistance of the coatings was studied by salt spray test in accordance with ASTM B117 standard and electrochemical techniques including electrochemical impedance spectroscopy (EIS) and electrochemical polarization measurements in NaCl 3.5 % solution. The EIS spectra were conducted in a frequency range of 10^0 to 10^2 Hz. The polarization curve was measured in a range of 0.2 - 0.4 V vs E$_{ocp}$ with a scanning speed of 0.2 mV/s on electrochemical measuring equipment Biologic VSP 300 (France). The erosion corrosion resistance of the coatings was tested in a slurry flow of H$_2$SO$_4$ pH2 solution containing 3 % SiC solid grains with a rotational speed of 1040 m/min (4 m/s) for 168 hours [17, 18]. The mass loss during erosion corrosion test was monitored over time with analytical balance of 0.0001 g accuracy.

3. RESULTS AND DISCUSSION

3.1. Structural morphology of Al$_2$O$_3$ and CNTs/Al$_2$O$_3$ powders

The structural morphology of Al$_2$O$_3$ and CNTs/Al$_2$O$_3$ powders is shown in Figures 1 and 2.

![SEM image of Al$_2$O$_3$ powder before mixing with CNTs.](image)

Figure 1. SEM image of Al$_2$O$_3$ powder before mixing with CNTs.

The SEM images showed that, Al$_2$O$_3$ grains, before and after mixing with CNTs, are polygonal in shape with an average size of about 30 μm. On the other hand, CNTs, after mixing with Al$_2$O$_3$ powder, have distributed quite evenly on the surfaces of Al$_2$O$_3$ grains. The enlarged image of CNTs/Al$_2$O$_3$ powder sample (Figure 2, on the right) show that CNTs in the mixture remain in tube form without breaking the characteristic structure during the process of mixing with Al$_2$O$_3$ powder.
3.2. Structure and phase composition of CNTs/Al₂O₃ coating

The results of analyzing structures and phase compositions of Al₂O₃ and CNTs/Al₂O₃ coatings are shown in Figure 3.

The XRD results showed that, in coatings, besides the α-Al₂O₃ main phase composition, there was a presence of γ-Al₂O₃ phase composition due to the effect of high temperature in the plasma spray process, one part of α-Al₂O₃ phase changed to γ-Al₂O₃ phase. The peaks at the angles 2θ of 37.5; 46.2 and 67.6 are typical peaks of γ-Al₂O₃ phase. However, the characteristic peaks of CNTs do not appear in XRD spectrum because CNTs dispersed among Al₂O₃ grains that make detecting CNTs by XRD method more difficult (its content is below the detection limit of the XRD equipment).
3.3. Salt spray resistance

![Image of Al₂O₃ coating surface change](image1)

Figure 4. Surface change of Al₂O₃ coating during the salt spray test.

![Image of CNTs/Al₂O₃ coating surface change](image2)

Figure 5. Surface change of CNTs/Al₂O₃ coating during the salt spray test.

After conducting salt spray test for 24 hours with 5% NaCl solution, the results of surface observation of the CNTs/Al₂O₃ and Al₂O₃ coatings are shown in Figures 4 and 5.

One can see that there is a significant difference in corrosion protection of CNTs reinforced and non-CNTs reinforced coatings in salt spray test. For non-CNTs reinforced coating, red rust spots appeared on its surface after 2 hours of test. For CNTs reinforced coating, red rust spots appeared on its surface after 12 hours of test, which indicates that CNTs in the coating have
Nguyen Van Tuan, Ly Quoc Cuong, Le Thu Quy, Pham Thi Ha, Pham Thi Ly

improved the corrosion protection of the coating. According to the research results of Xinhua L. et al. [10], CNTs in Al$_2$O$_3$ coating have formed bridges that help to reduce defects and porosity of the coating, thus improve its corrosion protection. To further clarify this result, we have captured the cross-sectional structure of the coating on the optical microscope Axiovert 40 Mat (Figure 6).

![Image](image-url)

Figure 6. Cross-sectional structures of Al$_2$O$_3$ and CNTs/Al$_2$O$_3$ coatings.

The observation of cross-sectional structures of the coatings by optical microscope reveal that the pure Al$_2$O$_3$ coating contain more micropores than the coating with CNTs reinforcement. The large number of micropores inside the Al$_2$O$_3$ coating has facilitated a rapid penetration of NaCl solution through the coating causing corrosion for the steel substrate. Therefore, it can be seen that, the corrosion products of the steel substrate appeared on the surface of Al$_2$O$_3$ coating after just 2 hours of test.

The results of polarization and EIS measurements for coatings in 3.5 % NaCl solution presented below will clarify the results obtained above.

3.4. Electrochemical measurement

The coated samples with the surface 1 cm2 were immersed in 3.5 % NaCl solution for about 30 minutes prior to EIS and polarization measurements.

Figure 7 presents the Nyquist plots of EIS spectra of Al$_2$O$_3$ and CNTs/Al$_2$O$_3$ samples. This figure also gives the most suitable equivalent circuit used to fit EIS data. The continuous curves represent the plots after fitting using EC-LabV11.02 software. In the equivalent circuit, R_s defines the equivalent resistance of the electrolytic solution; Q_1 defines the resistance and capacitance of coating; R_2 defines the resistance and capacitance of boundary between coating and steel substrate [19].

Table 1. Fit data from the EIS measurement through corresponding equivalent circuit.

<table>
<thead>
<tr>
<th>Sample</th>
<th>R_s, Ω</th>
<th>$Q_1 \times 10^{-3}$</th>
<th>a_1</th>
<th>R_1, Ω</th>
<th>$Q_2 \times 10^{-3}$</th>
<th>a_2</th>
<th>R_2, Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>6.886</td>
<td>16.51</td>
<td>0.8179</td>
<td>1334</td>
<td>3.228</td>
<td>0.3278</td>
<td>338.1</td>
</tr>
<tr>
<td>M2</td>
<td>114.8</td>
<td>5.24</td>
<td>0.7575</td>
<td>2437</td>
<td>2.82</td>
<td>0.625</td>
<td>2742</td>
</tr>
</tbody>
</table>
Figure 7. Nyquist diagram of Al₂O₃ and CNTs/Al₂O₃ coating measured in 3.5 % NaCl solution.

Table 1 shows the calculated values of coatings, the results show that, the resistance in the micropores (R₁) as well as the typical resistance of eroded steel substrate of CNTs reinforced coatings are 2-8 times higher than those of non-CNTs reinforced coatings.

The polarization curves of Al₂O₃ and CNTs/Al₂O₃ samples measured in 3.5 % NaCl solution are shown in Figure 8.

Table 2 summarizes the corrosion parameters obtained from the electrochemical polarization curves by EC-LabV11.02 software. The research results show that, Al₂O₃ sample has more negative corrosion potential and 50 % higher corrosion current density than that of the CNTs/Al₂O₃ coating. Thus, it can be seen that, the corrosion resistance of Al₂O₃ coatings created by air plasma spray technique is significantly improved after reinforcement of CNTs. This result is quite consistent with the salt spray test results shown in section 3.3.

Figure 8. Polarization curves of Al₂O₃ and CNTs/Al₂O₃ coatings measured in 3.5 % NaCl solution.
Table 2. Corrosion parameters from polarization curve measurement.

<table>
<thead>
<tr>
<th>Sample</th>
<th>$E_{\text{corr}}, \text{mV/SCE}$</th>
<th>$I_{\text{corr}}, \mu\text{A/cm}^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al$_2$O$_3$</td>
<td>-600</td>
<td>6.6</td>
</tr>
<tr>
<td>CNTs/Al$_2$O$_3$</td>
<td>-548</td>
<td>4.3</td>
</tr>
</tbody>
</table>

3.5. Erosion corrosion resistance

Figure 9 shows the results of the erosion corrosion resistance test for the coating over time. The result shows that, the mass loss of Al$_2$O$_3$ sample is higher than that of CNTs/Al$_2$O$_3$ one at all measuring times after 24 - 168 hours of test. This indicates that the erosion corrosion resistance of CTNs reinforced coating is higher than that of non-CTNs reinforced coating.

After 168 hours of test, the mass loss of CNTs/Al$_2$O$_3$ coating is 270 mg while the mass loss of Al$_2$O$_3$ coating is 328 mg. Therefore, the erosion corrosion resistance of CTNs reinforced Al$_2$O$_3$ coating is about 17% higher in comparison with that one of non-CNTs reinforced coating. The CNTs forming bridges between grains in the coatings makes not only a reduction of the porosity of the coating but also an increase in bonding between grains in the coating, thereby it would increase the erosion corrosion resistance of the coating. This shows that CNTs help to improve the corrosion protection and erosion corrosion resistance of the coating. Thus, CNTs/Al$_2$O$_3$ coating may be used as a protective coating for machine parts operated in corrosive environments with erosion factor.

![Figure 9. Erosion corrosion resistance of coatings.](image-url)
4. CONCLUSIONS

After mixing with Al₂O₃ powder, CTNs are quite evenly distributed in the powder mixture and the CTNs’ characteristic structures are not broken.

The corrosion protection of CNTs/Al₂O₃ coating is higher than that of Al₂O₃ coating.

The erosion corrosion resistance of CNTs/Al₂O₃ coating is about 17% higher than that of Al₂O₃ coating.

Acknowledgements. The costs of this work were supported by the Institute for Tropical Technology, Vietnam Academy of Science and Technology.

REFERENCES

