NGHIỆN CƯU TÁC DỤNG HOẠT HUYẾT VÀ CẢI THIỂN TUẦN HOÀN CỔ TIM ĐỘNG VÂT CỦA TETRODOTOXIN

LÊ XUÂN TỪ, VŨ VĂN HANH
Viện Công nghệ sinh học

1. ĐỐI TƯỜNG

60 con chuột nhật trắng Swiss có trọng lượng trung bình 20±2 g, 60 con chuột công trắng Stary có trọng lượng trung bình 150±20 g, 30 con thỏ được cấy trọng lượng trung bình 2,53±0,5 kg.

Họa chất: Độc tố TTX được tách chieft và tinh chất từ một số loại cá độc của vùng biển Việt Nam. Dùng dịch pituitrin 5 mg, dung dịch axit axetic1%, dung dịch sinh lý NaCl 0,9%.

2. Phương pháp

a) Nghiên cứu tác dụng hoat huyệt của TTX

Thỏ được chia ngẫu nhiên làm 2 lọ, mỗi lọ 10 con.
- Lọ đối chứng không xử lý: nghiên cứu các chỉ tiêu về thời gian máu đông, thời gian chảy máu và thời gian huyệt tan.
- Lọ thí nghiệm xử lý bằng TTX: nghiên cứu thời gian máu đông, thời gian chảy máu và tác dụng tan huyệt của TTX.

b) Nghiên cứu tác dụng của TTX lên điện tim E.C.G ở thỏ

Ghi điện tim bấm máy do điện tim Fukuda - Denshi (Nhật Bản).
Ghi điện tim ở dạo trinh D2 và V1 của thô bình thường trước khi gây thiếu máu cơ tim bằng pituitrin.
Ghi điện tim ở dạo trinh D2 và V1 của thô sau khi gây thiếu máu cơ tim bằng pituitrin.
Ghi điện tim ở dạo trinh D2 và V1 của thô sau khi gây thiếu máu cơ tim bằng pituitrin và điều trị bằng TTX.

Tính toán, so sánh các chỉ tiêu QT, ST, R trước và sau điều trị bằng TTX ở thô đã gây thiếu máu cơ tim bằng pituitrin.
Ghi E.C.G theo chuyển dạo máu Einthoven như sau:

![Diagram](attachment:diagram.png)
Khoảng cách QT được tính từ đầu sang Q đến kết sóng T là thời gian tâm thu điện học của tâm thất được tính theo công thức Heglin – HolZmann:

$$QT = 0.3gy\sqrt{RR} \pm 0.02$$

Các số liệu nghiên cứu được tính toán và xử lý theo phương pháp thống kê sinh học.

II. KẾT QUẢ NGHIỂN CỨU

1. Tác dụng hoạt huyết của TTX

Kết quả nghiên cứu ở bảng 1 và hình 1 cho thấy: thời gian đông máu của lỏ suốt được xử lý bằng TTX lớn hơn so với lỏ đội chúng (395°±24,30° so với 289,00°±31,30°). Điều này rất có ý nghĩa trong quá trình làm lâu thông máu trong mạch máu, do TTX có tác dụng làm chậm lại quá trình đông máu.

Kết quả nghiên cứu cũng chứng tỏ thời gian chảy máu do xử lý TTX (234°±53,67°) lại ngắn hơn so với đội chúng (333,00°±70,82°). Đặc biệt, dòng xét do xử lý bằng TTX có thời gian tan huyết ngắn hơn so với lỏ đội chúng (108,00°±20,39° so với 348°±26,43°). Kết quả này càng khẳng định tác dụng làm tan huyết nhanh của TTX so với đội chúng, sự khác biệt này có ý nghĩa với $P < 0,001$.

Bảng 1

<table>
<thead>
<tr>
<th>Lỏ thử nghiệm</th>
<th>Thời gian máu đông (giây)</th>
<th>Thời gian máu chảy (giây)</th>
<th>Thời gian tan huyết (giây)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lỏ đội chúng</td>
<td>289,00±31,30</td>
<td>333,00±70,82</td>
<td>348,00±26,43</td>
</tr>
<tr>
<td>Lỏ xử lý TTX</td>
<td>395±24,30</td>
<td>234±53,67</td>
<td>108,00±20,39</td>
</tr>
<tr>
<td>P</td>
<td>$< 0,001$</td>
<td>$< 0,005$</td>
<td>$< 0,001$</td>
</tr>
</tbody>
</table>

Hình 1. Tác dụng hoạt huyết của TTX

Kết quả soi dưới kính hiển vi điện tử ở hình 2 và hình 3 vẻ khá nang tan huyết của TTX so với đội chúng cho thấy: TTX chỉ có tác dụng làm tan sai huyết mà không gây ảnh hưởng tới cấu trúc tế bào hồng cầu, trong khi đó ở lỏ đội chúng thì cấu sai huyết và hồng cầu đều bị tan. Kết quả này rất có ý nghĩa trong việc sử dụng TTX để điều trị với cục máu trong mạch máu và điều trị nhiễm máu cơ tim của người bệnh.

2. Nghiệm cứu ảnh hưởng của TTX lên E.C.G của thờ`

 a) Kết quả E.C.G đo trong D2 trước và sau khi điều trị bằng TTX

 Kết quả phân tích E.C.G đo trong D2 ở
bảng 2 và hình 4 cho thấy: nhịp tim của thỏ khi gây nhiễm mâu cơ tim bằng pituitrin là (205±13,07) tăng so với bình thường (204,84±13,20), nhưng sau khi điều trị bằng TTX thì nhịp tim được phục hồi về trạng thái bình thường (202,22±13,67).

Hình 2. Xử lý hồng cầu chuột bằng dung dịch axit axetic 1%

Hình 3. Xử lý hồng cầu chuột bằng TTX
Khi gây nhồi máu cơ tim bằng pituitrin thì sốt R giảm (0,292±0,079) so với bình thường (0,333±0,012); sốt R được phục hồi dần dần về trạng thái bình thường sau khi điều trị bằng TTX (0,313±0,064). Hơn nữa, sốt ST cũng giảm (0,057±0,016) so với bình thường (0,071±0,022), sốt này được phục hồi về trạng thái bình thường sau khi điều trị bằng TTX (0,071±0,018). Trong khi đó, khi gây nhồi máu cơ tim bởi pituitrin thì sốt QT tăng (0,813±0,027) so với bình thường (0,753±0,035) và sốt này được phục hồi sau khi điều trị bằng TTX (0,765±0,089).

Nếu vậy, từ những kết quả nghiên cứu cho thấy thử bị gây nhồi máu cơ tim bằng pituitrin làm cho nhịp tim giảm, sốt R và sốt ST giảm nhưng sau khi điều trị bằng TTX thì các chỉ tiêu về nhịp tim, sốt R, sốt ST, sốt QT được phục hồi về trạng thái ban đầu.

Sự thay đổi E.C.G đo trên D2 trước và sau khi điều trị bằng TTX

<table>
<thead>
<tr>
<th>E.C.G</th>
<th>Chỉ tiêu nghiên cứu</th>
<th>Bình thường (X±SD)</th>
<th>Tiêm pituitrin (X±SD)</th>
<th>Tiêm pituitrin với xử lý bằng TTX (X±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2</td>
<td>Nhịp tim</td>
<td>205,35±13,07</td>
<td>202,22±13,67</td>
<td>204,84±13,20</td>
</tr>
<tr>
<td></td>
<td>R (mv)</td>
<td>0,333±0,012</td>
<td>0,292±0,079</td>
<td>0,313±0,054</td>
</tr>
<tr>
<td></td>
<td>QT (gy)</td>
<td>0,753±0,035</td>
<td>0,813±0,027</td>
<td>0,765±0,089</td>
</tr>
<tr>
<td></td>
<td>ST (gy)</td>
<td>0,071±0,022</td>
<td>0,057±0,016</td>
<td>0,071±0,018</td>
</tr>
</tbody>
</table>

Hình 4. Sự thay đổi nhịp tim và E.C.G. đo trên D2 trước và sau khi điều trị bằng TTX
b) Kết quả E.C.G đo trinh V1 trước và sau khi điều trị bằng TTX

<table>
<thead>
<tr>
<th>E.C.G</th>
<th>Chỉ tiêu nghiên cứu</th>
<th>Bình thường $\bar{X} \pm SD$</th>
<th>Tiêm pituitrin $\bar{X} \pm SD$</th>
<th>Tiêm pituitrin rối xuyến lý bằng TTX ($\bar{X} \pm SD$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>Nhịp tim</td>
<td>205,35±13,07</td>
<td>202,22±13,67</td>
<td>204,84±13,20</td>
</tr>
<tr>
<td></td>
<td>R (mv)</td>
<td>0,367±0,049</td>
<td>0,346±0,013</td>
<td>0,367±0,049</td>
</tr>
<tr>
<td></td>
<td>QT (gy)</td>
<td>0,717±0,032</td>
<td>0,818±0,027</td>
<td>0,721±0,024</td>
</tr>
<tr>
<td></td>
<td>ST (gy)</td>
<td>0,056±0,011</td>
<td>0,093±0,027</td>
<td>0,058±0,015</td>
</tr>
</tbody>
</table>

Hình 5. Sự thay đổi nhịp tim và E.C.G đo trinh V1 trước và sau khi điều trị bằng TTX

<table>
<thead>
<tr>
<th>Nhịp tim</th>
<th>R (mv)</th>
<th>QT (gy)</th>
<th>ST (gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bình thường</td>
<td>Pituitrin</td>
<td>Pituitrin + TTX</td>
<td></td>
</tr>
</tbody>
</table>

Ô bảng 3 và hình 5, kết quả phân tích E.C.G đo trinh V1 cho thấy: nhịp tim của thở gây nhiều cấu tạo tim bằng pituitrin giảm so với bình thường, nhưng sau khi điều trị bằng TTX thì nhịp tim được phục hồi về trạng thái bình thường.

Nghiên cứu cũng cho thấy gây nhiều cấu tạo tim bằng pituitrin thì sóng R giảm (0,346±0,013) so với bình thường (0,367±0,049), sóng R được phục hồi về trạng thái bình thường do điều trị bằng TTX (0,367±0,049). Mặt khác, sóng ST tăng (0,093±0,027) so với bình thường (0,056±0,011) và được phục hồi về trạng thái bình thường sau khi điều trị bằng TTX (0,058±0,015). Khi gây nhiều cấu tạo pituitrin thì sóng QT cũng tăng (0,818±0,027) so với bình thường (0,717±0,032) và sóng này được phục hồi khi điều trị bằng TTX (0,721±0,024).

Từ những kết quả nghiên cứu, cho thấy thở gây nhiều cấu tạo tim bằng pituitrin thì ở đo trinh V1 có sóng R giảm, trong khi sóng ST và sóng QT đều tăng nhưng sau khi điều trị bằng TTX thì các chỉ tiêu về nhịp tim, sóng R, sóng ST, sóng QT được phục hồi về trạng thái bình thường.

Nhu vực, qua nghiên cứu các chỉ tiêu nhịp tim, sóng R, sóng QT, sóng ST ở cả hai đo trinh D2 và V1 cho thấy khi gây nhiều cấu tạo tim bằng pituitrin ở thở đều gây ra hiện tượng bất thường cho các chỉ tiêu vita neu trên, nhưng khi điều trị bằng TTX thì các sóng đó được phục hồi về trạng thái bình thường. Qua kết quả nghiên cứu trên, có thể khẳng định TTX có tác dụng cải thiện tình trạng thiếu năng tuần hoàn cơ tim khi gây nhiều cấu tạo tim bằng pituitrin.
III. KẾT LUẬN

1. TTX có tác dụng làm tăng thời gian đông (395°±24.30°) so với đối chứng (289°±31.30°), làm giảm thời gian chảy máu (234°±53.67°) so với đối chứng (333°±70.82°) và cũng làm giảm thời gian tan huyết (348°±26.43°) so với đối chứng (108°±20.39°).

2. TTX có tác dụng làm tan sợi huyết ở thể mạch không làm tan tế bào hồng cầu và không ảnh hưởng gì đến cấu trúc của tế bào hồng cầu.

4. TTX có tác dụng phục hồi một số chỉ tiêu như sỏng R, sóng ST, sóng QT của E.C.G ở đạo trình D2 và V1 về trạng thái bình thường sau khi gây nhồi máu cơ tim bằng pituitrin.

TÀI LIỆU THAM KHẢO

EFFECT OF TETRODOTOXIN ON THE BLOOD ACTIVATION AND THE IMPROVEMENT OF THE HEARTMUSCLE CIRCULATION OF ANIMALS

LE XUAN TU, VU VAN HANH

SUMMARY

Tetrodotoxin increases the blood coagulation time (395°±24.30°) in comparison with the control (289°±31.30°). Beside, tetrodotoxin attenuates the bleeding time (234°±53.67°) in comparison with the control (333°±70.82°) and also attenuates the haemolysis time (348°±26.43°) in comparison with the control (108°±20.39°).

Tetrodotoxin has effect on the blood fibre disperse, but it has not effect on the erythrocyte cell dispersion and the erythrocyte cell structure.

Tetrodotoxin has the ability to recuperate the heart rhythm to the initial stage (202.22±13.07) when the infarct was caused by pituitrin (202.22±13.67). Tetrodotoxin has the ability to recuperate some figures: R, ST, QT of E.C.G at D2 and V1 to the initial stage when the infarct was caused by pituitrin.

Ngày nhận bài: 23-8-2002