Vol. 26 No. 3 (2016)
Papers

The Modern Induced Matter Approach of General Relativity for Quantum Mechanics

Vo Van Thuan
Vietnam Atomic Energy Institute (VINATOM)
Nguyen Thi Kim Thoa
Physics Faculty, Hanoi National University of Education, 136 Xuan Thuy, Dich Vong Hau, Cau Giay, Hanoi, Vietnam

Published 08-02-2017

Keywords

  • time-space symmetry,
  • general relativity,
  • microscopic cosmological model,
  • wave-like solution,
  • Klein-Gordon-Fock equation,
  • physical reality,
  • wave-particle duality.
  • ...More
    Less

How to Cite

Thuan, V. V., & Thoa, N. T. K. (2017). The Modern Induced Matter Approach of General Relativity for Quantum Mechanics. Communications in Physics, 26(3), 209. https://doi.org/10.15625/0868-3166/26/3/8956

Abstract

Wesson and his co-workers developed so-called space-time-matter theory (5D-STM) as a generalization of Kaluza-Klein theory, where the extra-dimension in the 5D space-time is no more compacted, but keeping extended in a macroscopic scale to describe the properties of matter in 4D physics. In a trend of 5D-STM approach (or the induced-matter theory), following a bi-cylindrical model of geometrical dynamics, a recent study has shown that the higher 6D-dimensional gravitational equation leads to bi-geodesic description in an extended timespace symmetry which fits Hubble expansion in a ”microscopic” cosmological model. As a duality, the geodesic solution is mathematically equivalent to the basic Klein-Gordon-Fock equations of free massive elementary particles. The 4D-embedded dual solutions of the higher dimensional gravitational equation could shed light on origin of physical reality in quantum mechanics, which is to compare with the achievements of the 5D-STM theory.

Downloads

Download data is not yet available.

References

  1. T.Kaluza, Sitz.Preuss.Akad.Wiss. 33, 966 (1921).
  2. O.Klein, Z.f.Physik 37, 895 (1926).
  3. J.Maldacena, Adv.Theor.Math.Phys. 2, 231 (1998).
  4. L.Randall and R.Sundrum, Phys. Rev. Lett. 83, 4690 (1999).
  5. P.S.Wesson and J.Ponce de Leon, J.Math.Phys. 33, 3883 (1992).
  6. B.Mashhoon, H.Liu, P.S.Wesson, Phys. Lett. B 331, 305 (1994).
  7. Vo Van Thuan, IJMPA 24, 3545 (2009).
  8. V.Fock, Z.f.Physik 39, 226 (1926).
  9. Vo Van Thuan, Com.Phys. 25, 247 (2015), arXiv:1507.00251[gr-qc]2015.
  10. Vo Van Thuan, arXiv:1510.04126[physics.gen-ph]2015.
  11. Vo Van Thuan, Com.Phys. 26, 181 (2016), arXiv:1604.05164v2[physics-gen.ph]2016.
  12. S.S.Seahra, P.S.Wesson, arXiv:0302015v4[gr-qc]2003.
  13. P.S.Wesson, arXiv:0309134v1[gr-qc]2003.
  14. P.S.Wesson, JMPD 24, 1530001-1 (2015).
  15. P.S.Wesson, Phys. Lett. B 701, 379 (2011).
  16. P.S.Wesson, Phys. Lett. B 706, 1 (2011).
  17. P.S.Wesson, Phys. Lett. B 722, 1 (2013).
  18. P.S.Wesson, Space-Time-Matter: Modern higher-dimensional cosmology,World Scientific, 2nd Edition, Singapore,2007.