# Approximate formula for the H/V ratio of Rayleigh waves in incompressible orthotropic half-spaces coated by a thin elastic layer

## DOI:

https://doi.org/10.15625/0866-7136/10033## Keywords:

Rayleigh waves, the Rayleigh wave H/V ratio, incompressible orthotropic elastic half-space, thin incompressible orthotropic elastic layer, approximate formula for the Rayleigh wave H/V ratio## Abstract

This paper is concerned with the propagation of Rayleigh waves in an incompressible orthotropic elastic half-space coated with a thin incompressible orthotropic elastic layer. The main purpose of the paper is to establish an approximate formula for the Rayleigh wave H/V ratio (the ratio between the amplitudes of the horizontal and vertical displacements of Rayleigh waves at the traction-free surface of the layer). First, the relations between the traction amplitude vector and the displacement amplitude vector of Rayleigh waves at two sides of the interface between the layer and the half-space are created using the Stroh formalism and the effective boundary condition method. Then, an approximate formula for the Rayleigh wave H/V ratio of third-order in terms of dimensionless thickness of the layer has been derived by using these relations along with the Taylor expansion of the displacement amplitude vector of the thin layer at its traction-free surface. It is shown numerically that the obtained formula is a good approximate one. It can be used for extracting mechanical properties of thin films from measured values of the Rayleigh wave H/V ratio.### Downloads

### Metrics

## References

M. Junge, J. Qu, and L. J. Jacobs. Relationship between Rayleigh wave polarization and state of stress. Ultrasonics, 44, (3), (2006), pp. 233–237. doi:10.1016/j.ultras.2006.03.004.

P. G. Malischewsky and F. Scherbaum. Loves formula and H/V-ratio (ellipticity) of Rayleigh waves. Wave Motion, 40, (1), (2004), pp. 57–67. doi:10.1016/j.wavemoti.2003.12.015.

P. G. Malischewsky, F. Wuttke, and A. Ziegert. The use of surface acoustic waves for nondestructive testing. SchriftenreiheWerkstoffwissenschaffen, 17, (2002), pp. 135–140. (in German).

L. M. Munirova and T. B. Yanovskaya. Spectral ratio of the horizontal and vertical Rayleigh wave components and its application to some problems of seismology. Izvestiia Physics of the Solid Earth, 37, (9), (2001), pp. 709–716.

F. Scherbaum, K. G. Hinzen, and M. Ohrnberger. Determination of shallow shear wave velocity profiles in the Cologne, Germany area using ambient vibrations. Geophysical Journal International, 152, (3), (2003), pp. 597–612. doi:10.1046/j.1365-246x.2003.01856.x.

P. C. Vinh and R. W. Ogden. On formulas for the Rayleigh wave speed. Wave Motion, 39, (3), (2004), pp. 191–197. doi:10.1016/j.wavemoti.2003.08.004.

P. C. Vinh and R. W. Ogden. Formulas for the Rayleigh wave speed in orthotropic elastic solids. Archives of Mechanics, 56, (3), (2004), pp. 247–265.

R. W. Ogden and P. C. Vinh. On Rayleigh waves in incompressible orthotropic elastic solids. The Journal of the Acoustical Society of America, 115, (2), (2004), pp. 530–533. doi:10.1121/1.1636464.

P. C. Vinh and R. W. Ogden. On the Rayleigh wave speed in orthotropic elastic solids. Meccanica, 40, (2), (2005), pp. 147–161. doi:10.1007/s11012-005-1603-6.

P. C. Vinh and P. G. Malischewsky. An improved approximation of Bergmann’s form for the Rayleigh wave velocity. Ultrasonics, 47, (1), (2007), pp. 49–54. doi:10.1016/j.ultras.2007.07.002.

P. C. Vinh and P. G. Malischewsky. An approach for obtaining approximate formulas for the Rayleigh wave velocity. Wave Motion, 44, (7), (2007), pp. 549–562. doi:10.1016/j.wavemoti.2007.02.001.

P. C. Vinh and P. G. Malischewsky. Improved approximations of the Rayleigh wave velocity. Journal of Thermoplastic Composite Materials, 21, (4), (2008), pp. 337–352. doi:10.1177/0892705708089479.

P. C. Vinh. On formulas for the velocity of Rayleigh waves in prestrained incompressible elastic solids. Journal of Applied Mechanics, 77, (2), (2010). doi:10.1115/1.3197139.

P. C. Vinh and P. T. H. Giang. On formulas for the Rayleigh wave velocity in pre-strained elastic materials subject to an isotropic internal constraint. International Journal of Engineering Science, 48, (3), (2010), pp. 275–289. doi:10.1016/j.ijengsci.2009.09.010.

P. C. Vinh. On formulas for the Rayleigh wave velocity in pre-stressed compressible solids. Wave Motion, 48, (7), (2011), pp. 614–625. doi:10.1016/j.wavemoti.2011.04.015.

P. C. Vinh and P. G. Malischewsky. Improved approximations for the Rayleigh wave velocity in [-1, 0.5]. Vietnam Journal of Mechanics, 30, (4), (2008), pp. 347–358. doi:10.15625/0866-7136/30/4/5640.

A. E. H. Love. Some problems of geodynamics. Cambridge University Press, (1911).

A. N. Stroh. Steady state problems in anisotropic elasticity. Studies in Applied Mathematics, 41, (1-4), (1962), pp. 77–103. doi:10.1002/sapm196241177.

P. C. Vinh, N. T. K. Linh, and V. T. N. Anh. Rayleigh waves in an incompressible orthotropic half-space coated by a thin elastic layer. Archives of Mechanics, 66, (3), (2014), pp. 173–184.

P. C. Vinh, V. T. N. Anh, and N. T. K. Linh. Exact secular equations of Rayleigh waves in an orthotropic elastic half-space overlaid by an orthotropic elastic layer. International Journal of Solids and Structures, 83, (2016), pp. 65–72. doi:10.1016/j.ijsolstr.2015.12.032.

P. C. Vinh, V. T. N. Anh, and N. T. K. Linh. On a technique for deriving the explicit secular equation of Rayleigh waves in an orthotropic half-space coated by an orthotropic layer. Waves in Random and Complex Media, 26, (2), (2016), pp. 176–188. doi:10.1080/17455030.2015.1132859.

## Downloads

## Published

## How to Cite

*Vietnam Journal of Mechanics*,

*39*(4), 365–374. https://doi.org/10.15625/0866-7136/10033